Distance difference functions on nonconvex boundaries of Riemannian manifolds
نویسندگان
چکیده
It is shown that a complete Riemannian manifold with boundary uniquely determined, up to isometry, by its distance difference representation on the boundary. Unlike previously known results, no restrictions are imposed.
منابع مشابه
Hamilton–jacobi Equations and Distance Functions on Riemannian Manifolds
The paper is concerned with the properties of the distance function from a closed subset of a Riemannian manifold, with particular attention to the set of singularities.
متن کاملPrescribing Curvatures on Three Dimensional Riemannian Manifolds with Boundaries
Let (M, g) be a complete three dimensional Riemannian manifold with boundary ∂M . Given smooth functions K(x) > 0 and c(x) defined on M and ∂M , respectively, it is natural to ask whether there exist metrics conformal to g so that under these new metrics, K is the scalar curvature and c is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a ...
متن کاملSharp Sobolev Trace Inequalities on Riemannian Manifolds with Boundaries
In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact Riemannian manifolds with smooth boundaries. More specifically, let q = 2(n− 1)/(n− 2) , 1 S = inf {∫ R n + |∇u| : ∇u ∈ L(R+) , ∫ ∂R+ |u| = 1 } . We establish for any Riemannian manifold with a smooth boundary, denoted as (M,g), that there exists some constant A = A(M,g) > 0, ( ∫ ∂M |u| dsg) ≤ S ∫ M |∇gu...
متن کاملMulti-robot coverage and exploration on Riemannian manifolds with boundaries
Multi-robot coverage and exploration are fundamental problems in robotics. A widely used, efficient and distributable algorithm for achieving coverage of a convex environment with Euclidean metrics is that proposed by Cortes which is based on the discrete-time Lloyd’s algorithm. This algorithm is not directly applicable to general Riemannian manifolds with boundaries that are non-convex and are...
متن کاملA class of self-concordant functions on Riemannian manifolds
The notion of self-concordant function on Euclidean spaces was introduced and studied by Nesterov and Nemirovsky [6]. They have used these functions to design numerical optimization algorithms based on interior-point methods ([7]). In [12], Constantin Udrişte makes an extension of this study to the Riemannian context of optimization methods. In this paper, we use a decomposable function to intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: St Petersburg Mathematical Journal
سال: 2021
ISSN: ['1061-0022', '1547-7371']
DOI: https://doi.org/10.1090/spmj/1689